Calidad de Wikipedia

From Wikipedia Quality
Jump to: navigation, search
This page is a translated version of the page Wikipedia Quality and the translation is 26% complete.

Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский
Bienvenido a la Calidad Wikipedia,
Portal sobre conceptos, investigaciones y servicios relacionados con la evaluación de la calidad de la Wikipedia multilingüe..
Número de artículos: 3570
Número de científicos en cada país que realizan investigaciones sobre la calidad de la Wikipedia.

A pesar del hecho de que a menudo se critica a Wikipedia por su mala calidad, sigue siendo una de las bases de conocimiento más populares del mundo. Actualmente, esta enciclopedia en línea está en el 5to lugar en el ranking de los sitios más visitados (después de Google, YouTube, Facebook, Baidu). Los artículos en esta enciclopedia se crean y se editan en aproximadamente 300 idiomas diferentes. Actualmente Wikipedia contiene más de 48 millones artículos sobre diversos temas e idiomas.

Cada día el número de artículos en Wikipedia está creciendo. Pueden ser creados y editados incluso por usuarios anónimos. Los autores no necesitan demostrar formalmente sus habilidades, educación y experiencia en ciertas áreas. Wikipedia no tiene un equipo editorial central o un grupo de revisores que puedan revisar exhaustivamente todos los textos nuevos y existentes. Por estas y otras razones, la gente a menudo critica el concepto de Wikipedia, en particular, señalando la mala calidad de la información.

A pesar de esto, en Wikipedia usted puede encontrar a veces información valiosa-dependiendo de la versión del idioma y el tema. Prácticamente en cada versión lingüística hay un sistema de premios para los mejores artículos. Sin embargo, el número de estos artículos es relativamente pequeño (menos del uno por ciento). En algunas versiones lingüísticas, también hay otros grados de calidad. Sin embargo, la abrumadora mayoría de los artículos no han sido evaluados (en algunos idiomas más del 99%).

Automatic quality assessment of Wikipedia articles

So, in Wikipedia, many articles do not have quality grades, so each reader should manually analyze their content. Automatic quality assessment of Wikipedia articles is known and wide area in the scientific world - researchers from over 50 countries published various works related to quality of Wikipedia. Basically, the scientific works describes the most developed language version of Wikipedia – English, which already contains more than 5.5 million articles.

Wikipedia Quality

Since it foundation and with the growing popularity of Wikipedia, more and more scientific publications on this subject have published. One of the first studies showed that measuring the volume of content can help determine the degree of “maturity” of the Wikipedia article. Works in this direction shows that, in general, higher-quality articles are long, use many references, are edited by hundreds of authors and have thousands of editions.

How do they come to such conclusions? Simply put: comparing good and bad articles.

As already mentioned earlier, in almost every language version of Wikipedia, there is a system of assessing the quality of articles. The best articles are awarded in a special way – they receive a special “badge”. In Russian Wikipedia such articles are called “Featured Articles” (FA). There is another “badge” for articles that slightly below the best ones – “Good articles” (GA). In some language versions, there are other estimates for more “weak” articles. For example, in English Wikipedia there are also: A-class, B-class, C-class, Start, Stub. On the other hand in Russian Wikipedia we can met the following additional grades: Solid, Full, Developed, In development, Stub.

Even on the example of the English and Russian versions, we can conclude that the standards for the grading scale are different and depends on the language. Moreover, not all language versions of Wikipedia have such a developed system of quality assessment of articles. For example, German Wikipedia, which contains more than 2 million articles, uses only two estimates – equivalents for FA and GA. Therefore, often assessments in scientific papers are grouped into two groups:[1][2][3][4][5][6][7][8]

  • ”Complete” – FA and GA grade,
  • ”Incomplete” – all other grades

Let’s call this method “binary” (1 – Complete articles, 0 – Incomplete articles). This separation naturally “blurs” the boundaries between individual classes, but it allows you to build and compare quality models for different language versions of Wikipedia.

Data Mining

To build such models, you can use various algorithms, in particular Data Mining. One of the most commonly used algorithms – Random Forest[1][2][3][4][6][7][8][5]. There are even studies[4], which compare it with other algorithms (CART, SMO, Multilayer Perceptron, LMT, C4.5, C5.0 and others). Random Forest allows to build models even using variables that correlates with each other. Additionally, this algorithm can show which variables are more important for determining the quality of articles. If we need to get other information about the importance of variables, we can use other algorithms, including logistic regression.[9]

The results show that there are differences between article quality models in different language versions of Wikipedia.[1][2][3][4] So, if in one language version one of the most important parameters is the number of references (sources), in another language will be more important the number of images and the length of the text.

In this case, the quality is modeled as the probability of referring an article to one of two groups – Complete or Incomplete. The conclusion is made on the basis of analysis of various parameters (metrics): the length of the text[10][11][12][13][14][15], the number of references[16][17][18][19], images[20][21], sections[22][23], links to the article, the number of facts[7][24], visits, the number of editions and many others. There are also a number of linguistic parameters,[6][8] which depend on the considered language. Also it can be taken into the account measures that shows number of the links from external sources, such as Reddit, Facebook, Youtube, Twitter, Linkedin, VKontakte and other social services.[25]

Currently, in total, more than 300 parameters (or measures) are used in studies, depending on the language version of Wikipedia and the complexity of the quality model. Some parameters, such as references (sources), can be evaluated additionally[26] – we can not only count the quantity, but also assess how well-known and reliable sources are used in the Wikipedia article.

Where to get these parameters?

There are several sources – it can be a backup copy of Wikipedia, API service, special tools and others.[27]

To get some parameters, you just need to send a request (query) to the appropriate API, for other parameters (especially linguistic ones) you need to use special libraries and parsers. A considerable part of the time, however, is spent writing your own tools (we’ll talk about this in separate articles).

Are there other ways for quality assessing of Wikipedia articles other than binary?

Yes. Recent studies[28][29] propose the method for estimating articles on a scale from 0 to 100 in a continuous scale. Thus, an article can receive, for example, an estimate of 54.21. This method has been tested in 55 language versions. The results are available on the WikiRank service, which allows you to evaluate and compare the quality and popularity of Wikipedia articles in different languages. The method, of course, is not ideal, but works for locally known topics.[29]

Are there ways of assessing the quality of some part of Wikipedia article?

Of course. For example, one of the important elements of the article is the so-called “infobox”. This is a separate frame (table), which is often located at the top right of the article and shows the most important facts about the subject. So, there is no need to look for this information in the text – you can just look at this table. Evaluation of the quality of these infoboxes is devoted to individual studies.[2][30] There are also projects, such as Infoboxes.net, which allow you to automatically compare the infoboxes in different language versions.

Why do we need all this?

Wikipedia is used often, but the information quality is not always checked. The proposed methods can simplify this task – if the article is bad, then the reader, knowing this, will be more careful in using its materials for decision making. On the other hand, the user can also see in which language the topic of interest is described better. And most importantly, modern techniques allow you to transfer information between different language versions. This means that you can automatically enrich the weak versions of Wikipedia with high-quality data from other language versions.[31] This will also improve the quality of other semantic databases, for which Wikipedia is the main source of information. First of all, this is – DBpedia, Wikidata, YAGO2 and others.

References

  1. 1.0 1.1 1.2 Lewoniewski, W., Węcel, K., Abramowicz, W. (2016). Quality and Importance of Wikipedia Articles in Different Languages. In International Conference on Information and Software Technologies (pp. 613-624). Springer International Publishing.
  2. 2.0 2.1 2.2 2.3 Węcel, K., Lewoniewski, W. (2015). Modelling the Quality of Attributes in Wikipedia Infoboxes. In International Conference on Business Information Systems (pp. 308-320). Springer International Publishing.
  3. 3.0 3.1 3.2 Lewoniewski, W., Węcel, K., Abramowicz, W. (2015). Analiza porównawcza modeli jakości informacji w narodowych wersjach Wikipedii. Prace Naukowe/Uniwersytet Ekonomiczny w Katowicach, 133-154.
  4. 4.0 4.1 4.2 4.3 Lewoniewski, W., Węcel, K., Abramowicz, W. (2017), Comparative analysis of classification models for quality assessment of Wikipedia articles, Matematyka i informatyka na usługach ekonomii, Wydawnictwo UEP Poznań, ISBN 9788374179386
  5. 5.0 5.1 Warncke-Wang, Morten, Dan Cosley, and John Riedl. Tell Me More: An Actionable Quality Model for Wikipedia. Proceedings of the 9th International Symposium on Open Collaboration. ACM, 2013.
  6. 6.0 6.1 6.2 Khairova, N., Lewoniewski, W., Węcel, K. (2017). Estimating the Quality of Articles in Russian Wikipedia Using the Logical-Linguistic Model of Fact Extraction. In International Conference on Business Information Systems (pp. 28-40). Springer, Cham.
  7. 7.0 7.1 7.2 Lewoniewski, W., Khairova, N., Węcel, K., Stratiienko, N., & Abramowicz, W. (2017). Using Morphological and Semantic Features for the Quality Assessment of Russian Wikipedia. In International Conference on Information and Software Technologies (pp. 550-560). Springer, Cham. DOI: 10.1007/978-3-319-67642-5_46
  8. 8.0 8.1 8.2 Lewoniewski, W., Wecel, K., Abramowicz, W. (2017). Determining Quality of Articles in Polish Wikipedia Based on Linguistic Features.
  9. Lamek, A., Lewoniewski, W. (2017), Zastosowanie regresji logistycznej w ocenie jakości informacji na przykładzie Wikipedii. Studia Oeconomica Posnaniensia 12/2017. DOI: 10.18559/SOEP.2017.12.3
  10. Blumenstock, J.E.: Automatically Assessing the Quality of Wikipedia Articles. Tech. rep. (2008)
  11. Conti, R., Marzini, E., Spognardi, A., Matteucci, I., Mori, P., Petrocchi, M.: Maturity Assessment of Wikipedia Medical Articles. In: Computer-Based Medical Systems (CBMS), 2014 IEEE 27th International Symposium on. pp. 281-286. IEEE (2014)
  12. Yaari, E., Baruchson-Arbib, S., Bar-Ilan, J.: Information Quality Assessment of Community Generated Content: A User Study of Wikipedia. Journal of Information Science 37(5), 487-498 (2011)
  13. Dang, Q.V., Ignat, C.L.: Measuring Quality of Collaboratively Edited Documents: The Case of Wikipedia. In: Collaboration and Internet Computing (CIC), 2016 IEEE 2nd International Conference on. pp. 266-275. IEEE (2016)
  14. Shen, A., Qi, J., Baldwin, T.: A hybrid model for quality assessment of wikipedia articles. In: Proceedings of the Australasian Language Technology Association Workshop 2017. pp. 43-52 (2017)
  15. Zhang, S., Hu, Z., Zhang, C., Yu, K.: History-based article quality assessment on wikipedia. In: Big Data and Smart Computing (BigComp), 2018 IEEE International Conference on. pp. 1-8. IEEE (2018)
  16. Warncke-Wang, M., Ayukaev, V. R., Hecht, B., & Terveen, L. G. (2015). The Success and Failure of Quality Improvement Projects in Peer Production Communities. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 743-756). ACM.
  17. Soonthornphisaj, N., & Paengporn, P. (2017). Thai Wikipedia Article Quality Filtering Algorithm. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 1).
  18. Dalip, D.H., Gonçalves, M.A., Cristo, M., Calado, P.: Automatic Quality Assessment of Content Created Collaboratively by Web Communities: A Case Study of Wikipedia. In: Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries. pp. 295-304 (2009).
  19. di Sciascio, C., Strohmaier, D., Errecalde, M., Veas, E.: Wikilyzer: interactive information quality assessment in wikipedia. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces. pp. 377-388. ACM (2017)
  20. Wu, K., Zhu, Q., Zhao, Y., Zheng, H.: Mining the Factors Affecting the Quality of Wikipedia Articles. In: Information Science and Management Engineering (ISME), 2010 International Conference of. vol. 1, pp. 343-346. IEEE (2010)
  21. Liu, J., Ram, S.: Using Big Data and Network Analysis to Understand Wikipedia Article Quality. Data & Knowledge Engineering (2018)
  22. Blumenstock, J.E.: Size Matters: Word Count as a Measure of Quality on Wikipedia‎. In: WWW. pp. 1095-1096 (2008).
  23. Lerner, J., Lomi, A.: Knowledge Categorization Affects Popularity and Quality of Wikipedia Articles‎. PloS one 13(1), e0190674 (2018)
  24. Lex, Elisabeth, Michael Voelske, Marcelo Errecalde, Edgardo Ferretti, Leticia Cagnina, Christopher Horn, Benno Stein, and Michael Granitzer. Measuring the Quality of Web Content Using Factual Information‎. In Proceedings of the 2nd joint WICOW/AIRWeb workshop on web quality, pp. 7-10. ACM, 2012.
  25. Lewoniewski, W., Härting, R. C., Wecel, K., Reichstein, C., Abramowicz, W. (2018). Application of SEO Metrics to Determine the Quality of Wikipedia Articles and Their Sources. In International Conference on Information and Software Technologies (pp. 139-152). Springer, Cham
  26. Lewoniewski, W., Węcel, K., Abramowicz, W., (2017), Analysis of References Across Wikipedia Languages. Information and Software Technologies. ICIST 2017. DOI: 10.1007/978-3-319-67642-5_47
  27. Lewoniewski, W., Węcel, K., (2017), Cechy artykułów oraz metody ich ekstrakcji na potrzeby oceny jakości informacji w Wikipedii. Studia Oeconomica Posnaniensia 12/2017. DOI: 10.18559/SOEP.2017.12.7
  28. Lewoniewski, W., Węcel, K., Abramowicz, W. (2017). Relative Quality and Popularity Evaluation of Multilingual Wikipedia Articles. In Informatics (Vol. 4, No. 4, p. 43). Multidisciplinary Digital Publishing Institute. DOI: 10.3390/informatics4040043
  29. 29.0 29.1 Lewoniewski, W., Węcel, K. (2017). Relative Quality Assessment of Wikipedia Articles in Different Languages Using Synthetic Measure. In International Conference on Business Information Systems (pp. 282-292). Springer, Cham. DOI: 10.1007/978-3-319-69023-0_24
  30. Lewoniewski, W. (2017). Completeness and Reliability of Wikipedia Infoboxes in Various Languages. In International Conference on Business Information Systems (pp. 295-305). Springer, Cham. DOI: 10.1007/978-3-319-69023-0_25
  31. Lewoniewski, W. (2017). Enrichment of Information in Multilingual Wikipedia Based on Quality Analysis. In International Conference on Business Information Systems (pp. 216-227). Springer, Cham. DOI: 10.1007/978-3-319-69023-0_19