Reinforcement learning

From Wikipedia Quality
(Redirected from Actor-critic method)
Jump to: navigation, search

Reinforcement learning (RL) is an area of machine learning inspired by behaviourist psychology, concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. The problem, due to its generality, is studied in many other disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, statistics and genetic algorithms. In the operations research and control literature, reinforcement learning is called approximate dynamic programming, or neuro-dynamic programming. The problems of interest in reinforcement learning have also been studied in the theory of optimal control, which is concerned mostly with the existence and characterization of optimal solutions, and algorithms for their exact computation, and less with learning or approximation, particularly in the absence of a mathematical model of the environment. In economics and game theory, reinforcement learning may be used to explain how equilibrium may arise under bounded rationality.

In machine learning, the environment is typically formulated as a Markov decision process (MDP), as many reinforcement learning algorithms for this context utilize dynamic programming techniques. The main difference between the classical dynamic programming methods and reinforcement learning algorithms is that the latter do not assume knowledge of an exact mathematical model of the MDP and they target large MDPs where exact methods become infeasible.

Reinforcement learning differs from standard supervised learning in that correct input/output pairs need not be presented, and sub-optimal actions need not be explicitly corrected. Instead the focus is on performance, which involves finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge). The exploration vs. exploitation trade-off has been most thoroughly studied through the multi-armed bandit problem and in finite MDPs.